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A gyrostat [ 1 ] is a mechanical system ‘S which consists of a solid body 
‘SI and other bodies Sx which are connected to it. These other bodies are 
either variable or solid, but their motion relative to the body Sl does 
not alter the geometry of the mass system’s. 

Examples of such systems are: a solid body to which there are con- 
nected axes of several (or of one) symmetric gyroscopes; or a solid body 
with a cavity of arbitrary shape entirely filled with a homogeneous 
liquid; and similar systems. 

It is obvious that for a given distribution of masses in a gyrostat 
no change can occur in the position of the center of gravity of the 
principal axes and of the moments of inertia of the gyrostat with re- 
spect to any point of the solid body’s1 as the result of the internal 
motion of the bodies S,. 

In the present work there is investigated, by the use of the second 
method of Liapunov, the stability of certain motions of heavy gyrostats 
with one fixed point. 

1. ILet us suppose that the solid body S, has one fixed point 0 which 

we take as the origin of two rectangular coordinate systems: a fixed 

system O[r)( with the axis 05 directed upward, and a moving system 

Oxyz whose axes coincide with the principal axes of inertia of the gyro- 

stat S for the fixed point 0. 

By the theorem on the addition of velocities, the velocity vector of 

any point of S, relative to the Otq(-coordinate system is equal to the 

geometric sum of the transfer velocity of this point (in its motion with 

S1) and its relative velocity (in its motion with respect to S,). The 

vector of the moment of the entire motion of the S, body can be repre- 

sented as the geometric sum of the vectors of the moment of the transfer 

motion and the moment of the relative motion of this body. In view of 
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what has been said, the moment of the entire motion of the gyroscope re- 
lative to the point 0 can be represented as the geometric sum K + k, 
where K is the moment of the motion of the entire system S considered as 
one solid body, and k is the moment of the relative motion of the body 
S,. ‘Ihe projections of the vector k on the x, y, z-axes will be denoted 

by k,, k, and k,, while the projections of the vector K upon the same 
axes are given, respectively, by 

K, = Ap, h-2 = Bq, h-, = Cr 

where A, B and C are the principal moments of inertia of the gyrostat S 
for the point 0, and p, q and r are the projections on the moving axes 
of the vector o, the instantaneous velocity of the body S,. 

J3y the theorem on the moment of momentum we obtain the following equa- 
tions for the motion of a heavy gyrostat with one fixed point: 

A 2 + 2 + (C - B) qr + qk3 - rk2 = P (zor2 - x,rA 

B 2 + ‘2 + (A - C) rp + rkl - pk3 = P (qr3 - zord 

c -$ + ‘2 + (B - A) pq + pk, - qh”l = P (yorl - “corz) 

(1.1) 

Here P denotes the weight of the gyrostat; the constants x,,, y0 and 
z0 are the coordinates of its center of gravity; yl, yz and y3 are the 
cosines of the angles between the vertical axis 05 and the moving axes 
x, y and z which satisfy Poisson’s equations 

@rl 
z =rr2-qr3, 

drz dn 
-= ~=Pr3-rrly dt QT1- PY2 (1.2) 

Equations (1.1) and (1.2) do not, in general, suffice for the complete 
analysis of the motion of a heavy gyrostat with one fixed point. In 
addition one has to have equations of the relative motion of the body S, 
which can have different forms depending on the form of the body S,, on 
the nature of the imposed connection and on the acting forces inside the 
system S. For example, if the body S, is a homogeneous liquid filling a 
cavity of the solid body S,, then the equations of the relative motion 
can be written in the form of the hydrodynamic equations of Euler or of 
the Navier-Stokes equations, and of the equations of incompressibility, 
together with the boundary conditions on the walls of the cavity 16 1. 
If the body S, represents a symmetrical rotor with an axis that is fixed 
relative to S,, then the equation of the relative motion will have the 
form of the equation of motion of a solid body with a fixed axis, and so 
on. 

Equations (1.1) and (1.2) will suffice for the study of the motion of 
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a gyrostat in the case where the vector k is known at the start, i.e. in 
the case where the Ki(i = 1, 2, 3) are given functions of time, or, in 
particular, if they are constants. For example, the ki = const in the 
case of nonturbulent motion of an ideal liquid filling completely a 
multiply-connected cavity of S,. 

It is possible to give some first integrals of the motion of a gyro- 
stat. alet us assume that the internal forces acting on the body;s2 have 
a force (potential) function U and that the connections are stationary. 
Then on the basis of the theorem on the kinetic energy, one can obtain 
the following integral of the kinetic energy: 

4’ + W + Cr2 + 2 (P& + qk2 + rfc,) + 
+ 2 p-2 - u> + a3 (WI + YoT2 + w-r-3) = const (1.3) 

where T, denotes the kinetic energy of the body S, in its relative 
motion. 

If ki = const (i = 1, 2, 31, then the integral on the kinetic energy 
can be obtained by means of Equations (1.1) and (1.2). Indeed, let us 
multiply Equations (1.1) by p, q and r, respectively, and add the result. 
Then, in view of (1.2), we obtain the first integral 

Ap= -I- Bq2 + @ + 2P (q,rl + y,rz + z,y,) = const (1.4) 

which has the same form as it would have if the gyrostat S had been a 
solid body. 

Let us multiply (1.1) by,yl, yz and yl, respectively, and add the re- 
sult. Then, by (1.2), we obtain the integral of the planes 

(Ap + k,) rl+ (Bq + k,) ~2 + (CT 4 k3) 73 = const (1.5) 

In the case where the motion of the gyrostat is by inertia, when 

x0 = Ya = z. = 0, one can also obtain, in addition to the integrals of 
the form (1.51, integrals of the constancy of the moment of momentum of 
the system. With this in mind, let us multiply Equation (1.11, whose 
right sides are now zero, by A, + k,, Bq + k,, and Cr + k,, respectively, 
and add the results. After this we can easily obtain the integral 

VP + Q2 + (f% + k2)’ + (Cr + k312 = co=st p-3 
Concurrently we note that in Il, p. 223 1 it is mistakenly stated 

that the integral of the constancy of the moment of momentum, when Ki = 
const, has the form 
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A2p2 + B2q2 +- C2r2 = const (I.71 

One can easily reveal the mistake by taking the derivative with respect 
to time of the left-hand side of Equation (1.7). In view of (l.l), with 
x0 = y0 = z0 = 0, the obtained derivative will, in general, not vanish. 

Equations (1.2) obviously admit the geometric integral 

q2 + 722 + 7a2 = 1 (14 
2. #let us examine the stability of the permanent rotations of the 

gyrostat which is moving under inertia (x0 = y0 = z,, = 01, in the case 
when the k,(i = 1, 2, 3) are given constants. 

It should be noted that Zhukovskii [2 1 has given a geometric inter- 
pretation of the motion of a gyrostat for this case. A detailed investi- 
gation of the permanent rotations and their stability for a gyrostat 
moving under inertia was made by Volterra 13 1. For the investigation of 
the stability we shall make use of the direct method of Liapunov. 

Suppose the permanent axis has a fixed direction in the body, which 
is given by its direction cosines u, /3 and y in the moving coordinates. 
Then the projections of the angular velocity of the S, body upon the 
moving axes will be 

PrJ = Qw Qo = 44 r. = 07 (co = const) (2.U 

Hereby, Equations (1.1) will take on the form 

Cc - W Pv2 + 0 @ks - $2) = 0 
(A - C) yaw2 + co (ykl - ak,) = 0 

(B - A) ape” + o (ak, - pk,) = 0 

G-2) 

and they will serve for the determination of the corresponding value of 
the angular velocity o . Multiplying these equations by k,, k, and k,, 
respectively, and adding them, we obtain after cancelling out ti2 

(c - B) /-3ykl + (A - C) qk, + (B - A) a(lk3 = 0 (2.3) 

In terms of the variables u, p and sy, this is the equation of a cone 
of the second order [l 1 with its vertex at the fixed point 0. Equation 
(2.3) coincides with the cone of Staude-Mlodzeevski if one replaces ki 
by the coordinates of the center of gravity .x0, y,,, .za of the heavy 
solid body I 5 1 . 

Ihe investigation of the stability of the permanent rotations of the 
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gyrostat can be accomplished by means of the construction of aibiapunov 
function analogous to the one for the case of a single solid body I4,51. 
Setting in the perturbed motion 

p = PO + !L 9 = 40 + C2, r = )*o + E3 

one can easily see that the equations of the perturbed motion admit the 
following first integrals: 

v, = A (&I2 + 2P,EJ + B (Ez” + 2q&) + c (Ela2 + 2r,M = coust 

I’% = A2 (El2 + 2p,E1) + B2 (5a2 + &7,52) + C2 (5~~ + %&) +: 

+ 2 (AkE, + Bk2E2 + f%34 = con&. (2.4) 

Ihe ~Liaptov function can, for example, be constructed in the form 

(2.5) 

where, in view of Equation (2.2) 

h = APO + k L= &o + kz _ Cro +- k3 
Pa 90 r0 

Obviously, the function (2.5) has one definite sign if the ratios 

kl/pO, k,/q,, k3fr0 have the same sign, which establishes the stability 

of the permanent rotations under these conditions. 

Of greater interest are permanent rotations of a gyrostat with an 
arbitrary angular velocity o around its principal central axes of inertia, 
which are possible under the condition of collinearity of the vector k 
with the permanent axis of rotation. 

Suppose, for example, that k, = k, = 0, K, = k = const. Then Equation 
(2.2) admits the solution 

a===~==O, r==1 (PO = qn = 0, ro = 0) v-3 

for an arbitrary value of w. ‘Let us consider the function 

v=v,-(C_t ~)v~~-~~~v~2= ( c+q-$) 
= ,4(A- C,) El2 + B (13 - C,) E22 + C ($ - ;) Es2 + * . * (2.7) 

Here the dots stand for omitted terms of the third and fourth degree 
in gl, tz and c3. It is obvious that if 
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where in both inequalities one uses simultaneously either only the upper 
signs ox only the lower signs, then one can always choose such a value 
p = const that the function (2.7) will be of definite sign. On the basis 
of Liapunov's theorem, the motion (2.6) will be stable under the condi- 
tions (2.8). 

Next, let us consider the function 

and its time derivative 
the perturbed motion: 

A 91 
dt 

BL% 
dt 

We thus obtain 

IT = 51E2 (2.9) 

taken with the aid of the following equations of 

+ (C-B)I;z(w + 53) + @ =o 

t (A - Cl 51 (w + Es) - W = 0 

iI.& us suppose that during the entire time of motion, the variable e3 
preserves the order of smallness of the quantities & and Ez. In the 
opposite case we would have instability with respect to this variable. 

Then, if the inequalities 

C,ZA, B3C1 (2.11) 

hold simultaneously with both upper signs or with both lower signs, the 
function W' will be of definite sign in the variables t, and es. On the 
basis of a theorem of Chetaev [4 ] we can conclude that the unperturbed 
motion (2.6) is not stable in this case. 

The quantity C, h as the dimensions of a moment of inertia, and for 
the given angular velocity o it can be considered as a nfictitious" 
moment of inertia of the gyrostat with respect to the permanent axis z 
if C,l> 0. & introducing into our consideration the ellipsoid 

A$ +ByZ + c,z2= 1 (2.42) 

We can formulate the results obtained, obviously, in the form of a known 
theorem [4 1 on the stability of the permanent rotations of a solid body 
with the ellipsoid of inertia (2.12). 

One should, however, keep in mind that in the case of opposite signs 
of the quantities k and o, the quantity C, can be non-positive. 'Ihen the 
condition (2.8) will be satisfied with the upper sign, and, hence, the 
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undisturbed motion (2.6) will be stable. 

51s 13 ] if the ratio k/o lies within the bounds (A - C) and (B - C), 
the corresponding permanent motion (2.6) is unstable; in the opposite 
case it will be stable relative to the variables p, q and r. 

Hereby it is easy to establish the stability of the undisturbed motion 
with respect to perturbations of the quantities ki = const 13 I if it is 
stable with respect to the quantities p, q and r. 

3. Iet us consider the case when 

A>B, zo = $0 = 0, zo#O, k, = k2 = 0, k, = k = const (3.1) 

Equations (1.1) and (1.2) admit a particular solution 

p=q=o, r = 0, Tl=T2=0, rs = 1 (3.2) 

which describes a uniform rotation of a gyrostat with an arbitrary 
angular velocity o around the vertical axis z. We shall take this motion 
for the undisturbed motion and shall investigate its stability by setting 
in the disturbed motion 

r=w+E, 73=1+5 

We shall use the previous notation for the remaining variables. 

The equations of the disturbed motion admit the first integrals 

VI = Ap2 + Bq2 + C(E" + 2oE)+ 2Pz,5 = const 

v2 = h'l+ Bqy, + CE + C(a + E)C + k5 = const 

1'2 = T12 + ra2 + c2 + ag = 0 

let US construct the functions 

(3.3) 

V=V,-220V2+(Co2+kco-Pzo)VS +$~V+ 

= Ap2 - 2Aqq, + (Co2 + ko - Pz,) y12 + 

+ Bq2 - 2Boqy, + (Co2 + ko - Pz,) y22 + 

+C~2-2Co~~+(Co2+kr.o-Pzo+~)~2+. . . (3.4) 

where the repeated dots denote infinitesimals of the third or fourth 
order; the constant p I> Pz, - ko. 

According to Sylvester's criterion the condition for the positive- 
definiteness of the function (3.4) is the inequality 
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(C-A)w”+ko-Pz,>@ (3.5) 

When this condition (3.5) holds, the undisturbed motion (3.2) of an 
asymmetrical gyrostat will be stable with respect to the variables p, q, 

FJ Y11 Y-2’ Y3. 

4. Let us now proceed to the consideration of the stability of the 
rotation of a sy-mnetric gyrostat when the following conditions hold: 

A = B, x0 = y. = 0, ‘-““#O, k, = k, = 0 (4. l), 

and the projection of the vector k on the z-axis is some bounded func- 
tion of the time k, = k(t) determined by the equation of the relative 
motion of the body S,. 

Equations (1.1) take the following form in this case: 

A 2 + (c - A) 47 + qk (t) =Pz,y, 

A~+(B-c)rp-pk(t)=-P~~~, 
c$t+Ay=() 

(4.2) 

From the third of these equations we obtain the integral 

Cr + k(t) = const 

Multiplying the first of Equations (4.2) by p and 
and adding the result we obtain, in view of Equation 
first integral 

A (p” + q”) + 2Pz,r3 = const 

‘Ihe equations of motion (4.2) and (1.2) admit the 
solution 

(4.3) 

the second by q, 

(1.2), the next 

(4.4) 

following particular 

p=q=o, r1 z 7-2 = 0, Cr -t_ k (t) = K, l-3 = 1 (4.5) 

which describes the rotation of a gyrostat with a variable angular velo- 
city 

,=+;k(t) , 

around the vertical z-axis. We take this motion as the undisturbed 
motion, and shall investigate its stability by setting in the perturbed 
motion 
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Cr + k (t) = K + E; 73=1+5 (4.6) 

and retaining the previous notation for the remaining variables. 

lbe equations of the perturbed motion, which can easily be derived 

with the aid of (4.6), admit the following first integrals: 

V, = A (p” + q”) + 2Pz& = const 

Y2 = A (~7~ + qr2) + KS + E + EC = const 

v3 = T12 + ra2 + 5” + 2C = 0 

v4 = E = const 

(4.7) 

Let us construct the function 

v = v, + 2hV, - (Pz, + Kh) Y3 - 2hV, + f v42 

= Ap2 + 2Ah~i’, - (Pq, + Kh) ~12 + Aq2 + 2Ahqy, - (Pz, + Kh) r22 + 

i + E” + 2m - (Pz, + Kh) c2 
(4.8) 

In accordance with Sylvester’s criterion the condition for the 

positive-definiteness of the function (4.8) will be the inequality 

Ah2+Kh+Pz,<0 

which can be satisfied by the appropriate choice of the constant X if 

K2 - 4APz, > 0 (4.9) 

This is a generalization of the known Maievskii condition [4 1. 

When the condition (4.9) holds, the unperturbed motion (4.5) will be 

stable with respect to the quantities p, q, Cr + k(t), yl, yz and y3. 

In the case where k(t) is a given continuous bounded function we will 

also have stability with respect to r in view of the existence of the 

integral (4.3). 

It is easy to see that the condition (4.9) is also necessary for the 

stability of the undisturbed motion (4.5). Indeed, let us consider the 

function 

and its time derivative, evaluated on the basis of the equation of the 

disturbed motion 
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According to Sylvester's criterion the function W' will be positive- 
definite with respect to the variables p, q, yr and yB if the next in- 
equality holds: 

fi2 - 4APz, < 0 (4.10) 

Here it is assumed that the variable c always preserves the order of 
smallness of the variables p and q; in the opposite case we would have 
obvious instability of the undisturbed motion (4.5) with respect to yJ. 
Hence, if condition (4.10) holds, the undisturbed motion is unstable, 
since the function W would then fulfill the conditions of Chetaev's 
theorem on instability. 

Thus the inequality (4.9) is a necessary and sufficient condition for 
the stability of the undisturbed motion (4.5). 

In the case where k, = const the integral (4.3) takes the form 

r = const 

and in place of the particular solution (4.5) we will have the solution 

(3.2). 

In this case the condition for stability (4.9) becomes 

(Co + Ji3)2 -4APz,> 0 

'ibis inequality can be fulfilled by a proper selection of the quantity 
k, = const, and in the case where o= 0, i.e. the unstable equilibrium of 
a heavy gyrostat can be stabilized by a rotation of the body S,. 

5. We note that the results obtained above on the stability of per- 
manent rotations of a gyrostat for the case when ki = const (i = 1, 2, 3) 
are applicable, in particular, to a solid body with multiply-connected 
cavities which are completely filled with an ideal homogeneous liquid in 
a state of irrotational motion. 

Zhukovskii 12 ] has shown that the equations of motion of such a gyro- 
stat have the form of Equations (1.1) where A, B and C now denote the 
principal moments of inertia of the transformed solid body (obtained by 
connecting to S, solid bodies to replace the liquid masses), and the 
ki = const are the sums of the projections of the moments of the non- 
turbulent motions of the liquids in the multiply-connected cavities of 
the solid body. The latter are expressed by means of linear functions of 
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the principal circulations. For example, in the case of a ring-shaped 
cavity of rotation 12 1 around the z-axis 

kl = kz = 0, k3 = $$ 

where n is the mass of the liquid, x is the circulation of the velocity 
determined by the initial motion of the liquid. 

If at the initial mnt when the body is at rest the liquid is at 
rest too, then all the ki are zero and we have the case of one trans- 
formed body [l 1. For the case of vortex motion of a liquid within the 
cavity of a solid body, the stability of the rotation of the gyrostat 
about the vertical axis is investigated in 16 1. 
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